1704 - Describe reasons for converting between vector and raster forms of spatial data representation

Describe reasons for converting between vector and raster forms of spatial data representation

Topics

  • [DM-06-086] Vector-to-Raster and Raster-to-Vector Conversions

    Spatial data can be represented in vector or raster form. The vector spatial data model is coordinate-based and represents geographic features as points, lines, and polygons. The raster spatial data model is pixel-based and represents geographic phenomena as an organized matrix of cells. Each model possesses advantages, disadvantages, and tradeoffs in how data can be manipulated, analyzed, and rendered. As a result, GIS professionals often need to work between data models to achieve their analytical goals. Vector-to-raster and raster-to-vector conversions are fundamental spatial data manipulation processes used to transform one model of spatial data representation into the other to extend the utility of a spatial dataset. Vector-to-raster conversion, also known as rasterization, is the process of converting vector points, lines, and polygons into a surface of gridded cells or pixels. Advanced rasterization techniques, such as spatial interpolation and density mapping, can be used to predict raster surfaces at unsampled locations based on known values of nearby vector spatial data inputs. Raster-to-vector conversion, also known as vectorization, is the process of converting gridded cell- or pixel-based data into vector points, lines, and polygons. While powerful, these conversion processes also have implications for geographic accuracy and potential feature loss.